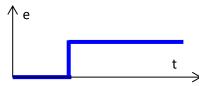

CARACTERISTIQUE D'UN SYSTEME DE REGULATION

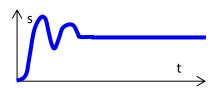
1. Système stable

Citer les définitions d'un système stable ou instable.

a. Régime transitoire régime permanent

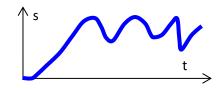

Pour passer d'un régime permanent à un autre le système passe par un régime transitoire.

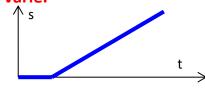
b. Procédés stables ou instables


Lorsque la grandeur d'entrée varie de façon finie : $_{\bigwedge}$ e

Exemple: un échelon

Un système est stable si la variation de la grandeur de sortie est finie.




Régime transitoire apériodique

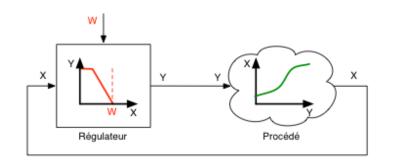
régime transitoire oscillant

Exemple : **Exemple :** Grandeur réglée (s) : température d'une pièce ; Grandeur réglante (e) : puissance du radiateur.

Un système est instable si la grandeur de sortie varie.

La grandeur de sortie oscille constamment

Procédé intégrateur s varie régulièrement


2. Caractéristique statique

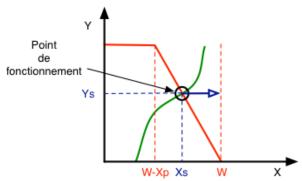
Tracer et exploiter la caractéristique statique d'un procédé stable. Calculer, au point de fonctionnement, le gain statique.

La caractéristique statique d'un procédé stable est la représen-tation graphique des valeurs prises par la grandeur de sortie (s) en fonction des valeurs de la grandeur d'entrée (e) en l'absence de perturbation : s = f(e).

Pour le procédé s = X et e = Y et pour le régulateur s = Y et e = X

Remarque : On ne peut tracer la caractéristique statique que d'un système stable.

Gain statique


Si le système est naturellement stable, le gain statique G_s est le rapport entre la variation de la grandeur de sortie Δs et la variation

$$G_s = \frac{\Delta s}{\Delta e}$$

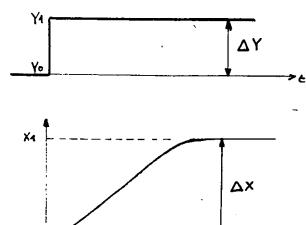
Erreur statique

Si le système est stable, l'erreur statique ϵ_s est la différence entre la consigne W et la mesure

X en régime permanent : ε_s = W - X

Point de fonctionnement

On trace sur le même graphe les relations entre la mesure X et la commande Y, pour le régulateur et le procédé.


Le point de fonctionnement en régime permanent appartient aux deux courbes. Il correspond à leur intersection (X_s, Y_s) .

La valeur de l'erreur statique est alors $E_s = W - X_s$.

 Mode opératoire permettant de déterminer le gain statique :

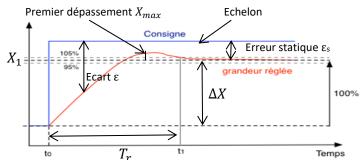
Le régulateur étant en fonctionnement manuel (Tout Ou Rien), on applique au système une grandeur réglante Y₀ et lorsque la mesure est stabilisée, on note sa valeur X₀. Ensuite on applique au système une nouvelle valeur de la grandeur réglante Y₁ et lorsque la nouvelle mesure est stabilisée, on note sa valeur X₁.

$$G_s = \frac{\Delta s}{\Delta e} = \frac{X_1 - X_0}{Y_1 - Y_0}$$

Mettre en évidence expérimentalement le déplacement du point de fonctionnement quand la perturbation varie.

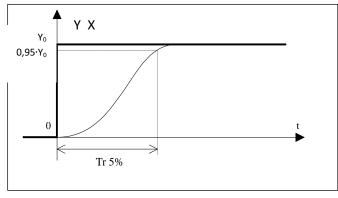
Lorsqu'on applique une perturbation sur le système on constate que la grandeur réglée X varie jusqu'à se stabilisé à une nouvelle valeur, on a un déplacement du point de fonctionnement.

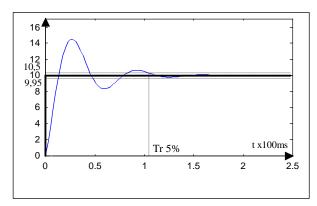
3. Caractéristique dynamique


a. Caractéristiques dynamiques

Les caractéristiques dynamiques d'un procédé ce sont les courbes Y(t) et X(t) fonctions du temps.

On appelle échelon une courbe qui passe brutalement d'une valeur constante à une autre valeur constante dans le temps.


■ Temps de réponse à 5 %


Le temps de réponse c'est l'aptitude du système à suivre les variations de la consigne. Il donne une information sur la **rapidité du système**.

Dans le cas d'un échelon de la consigne, on s'intéresse au temps de réponse à 5% (Tr). C'est le temps que met la réponse à rester dans une zone comprise entre plus ou moins 5% de la valeur visée : $Tr = t_1 - t_0$.

Exemples: Système non oscillant ou système oscillant

Temps de réponse à 5% d'un système non oscillant. Temps de réponse à 5% d'un système oscillant.

Remarque : Pour un système oscillant, **le temps de réponse** n'est pas le temps au bout duquel la réponse atteint 95% de la valeur visée mais **le temps au bout duquel la réponse reste définitivement dans la zone [95%,105%]**. On peut immédiatement remarquer que plus le système va osciller, plus son temps de réponse va augmenter : Tr 5% traduit le compromis rapidité/stabilité.

b. Détermination du temps de réponse

$$\Delta X \rightarrow 100\%$$
 donc $X_{5\%} = \frac{\Delta X \times 5}{100}$

La valeur de X correspondant à 95 % de la variation $X_{95\%}=X_1-X_{5\%}$ De même la valeur de X pour 105% est : $X_{105\%}=X_1+X_{5\%}$

c. Détermination du premier dépassement d%

$$d = \frac{X_{max} - X_1}{\Delta X} \times 100$$